
PErfidious
Make PE Backdooring Great Again!

tinyurl.com/hitb2019

About Me

● My name is Shreyans Devendra Doshi

● Cybersecurity Graduate Student @ UMD

● Graduate Teaching Assistant (Reverse Software Engineering) @ UMD

● Previously worked as a Malware Research Intern @ Cybrary Inc.

● Like reverse engineering and malware analysis.

 @0xbuilder @0xbuilder

https://github.com/0xbuilder/
https://twitter.com/0xbuilder

 Context

PErfidious

PE File Format

Components of a PE File

DOS Header (64 bytes)
struct _IMAGE_DOS_HEADER {

 WORD e_magic ← MZ Header signature
 WORD e_cblp ← Bytes on last page of file
 WORD e_cp ← Pages in file
 WORD e_crlc ← Relocations
 WORD e_cparhdr ← Size of header in paragraphs
 WORD e_minalloc ← Minimum extra paragraphs needed
 WORD e_maxalloc ← Maximum extra paragraphs needed
 WORD e_ss ← Initial (relative) SS value
 WORD e_sp ← Initial SP value
 WORD e_csum ← Checksum
 WORD e_ip ← Initial IP value
 WORD e_cs ← Initial (relative) CS value
 WORD e_lfarlc ← File address of relocation table
 WORD e_ovno ← Overlay number
 WORD e_res[4] ← Reserved words
 WORD e_oemid ← OEM identifier (for e_oeminfo)
 WORD e_oeminfo ← OEM information (Specific to e_oemid)
 WORD e_res2[10] ← Reserved words
 DWORD e_lfanew ← Offset to extended header
 }

DOS Stub (Variable)
struct DOS_STUB {

 VAR message ← ‘$’ terminated string

OR
DOS Program ← The stub can contain an entire DOS program

 }

Rich Header (Variable)
struct RICH_HEADER {

 WORD DanS_ID ← DanS ID = checksum(\x53\x6e\x61\x44) (SnaD)
 WORD Checksum Padding 1 ← checksum(\x00\x00\x00\x00)

WORD Checksum Padding 2 ← checksum(\x00\x00\x00\x00)
WORD Checksum Padding 3 ← checksum(\x00\x00\x00\x00)

DWORD CompID
| → Count [0:4]
| → ProductID [4:6]
| → BuildID [6:8]

.

.

.
n CompIDs

WORD RichID ← DanS ID = checksum(\x52\x69\x63\x68) (Rich)
WORD Checksum ← The actual checksum value

 VAR GarbageData
 }

PE Signature
WORD → \x50\x45\x00\x00 → PE\0\0

NT Header (Variable)

File Header (22 bytes)
struct _IMAGE_FILE_HEADER {

 WORD Machine ← Machine Type
 WORD NumberOfSections ← Number of sections in the PE file
 DWORD TimeDateStamp ← Time from January 1st 1970, 00:00:00
 DWORD PointerToSymbolTable ← RVA to the Symbol Table
 DWORD NumberOfSymbols ← Total number of symbols in the Symbol table
 WORD SizeOfOptionalHeader ← Size of the Optional Header
 WORD Characteristics ← Characteristics of the PE file
 }

Optional Header (100+/116+ bytes)
struct _IMAGE_OPTIONAL_HEADER32/64 {

 WORD/WORD Magic
 BYTE/BYTE MajorLinkerVersion
 BYTE/BYTE MinorLinkerVersion
 DWORD/DWORD SizeOfCode
 DWORD/DWORD SizeOfInitializedData
 DWORD/DWORD SizeOfUninitializedData
 DWORD/DWORD AddressOfEntryPoint
 DWORD/DWORD BaseOfCode
 DWORD/QWORD ImageBase
 DWORD/DWORD SectionAlignment
 DWORD/DWORD FileAlignment
 WORD/WORD MajorOperatingSystemVersion
 WORD/WORD MinorOperatingSystemVersion
 WORD/WORD MajorImageVersion
 WORD/WORD MinorImageVersion
 WORD/WORD MajorSubsystemVersion
 WORD/WORD MinorSubsystemVersion

 ...continued

Optional Header (100+/116+ bytes)
struct _IMAGE_OPTIONAL_HEADER32/64 {

 DWORD/DWORD Win32VersionValue ←
 DWORD/DWORD SizeOfImage ←
 DWORD/DWORD SizeOfHeaders ←
 DWORD/DWORD CheckSum ←
 WORD/WORD Subsystem ←
 WORD/WORD DllCharacteristics ←
 DWORD/QWORD SizeOfStackReserve ←
 DWORD/QWORD SizeOfStackCommit ←
 DWORD/QWORD SizeOfHeapReserve ←
 DWORD/QWORD SizeOfHeapCommit ←
 DWORD/DWORD LoaderFlags ←
 DWORD/DWORD NumberOfRvaAndSizes ←

DATA DIRECTORIES[n]
}

Data Directories

Current Code Injection Techniques

Custom Section Addition
1. Create a custom section containing malicious code.

2. Append this section(mostly at the end) to the PE file.

3. Append the section header and make an entry for the newly added

section.

4. Give the section execute permissions in the section header.

5. Change the entry point of the code in the Optional Header to point to the

beginning of the newly added section.

Disadvantages of this approach
1. Very easy to detect for endpoint detection systems.

2. Very difficult to do it CORRECTLY.

3. Ratio of stealth gained v/s time required for correct implementation is

way too low.

PE Code Caving
1. Find all the code-caves that exist inside the PE file.

2. Out of those code-caves, find all the code-caves that exist inside section(s)

with execute permissions.

3. Replace the nulls inside the code-cave with malicious code.

4. Change the AddressOfEntryPoint in the OptionalHeader of the PE file to

point to the newly filled code-cave.

Disadvantages of this approach
1. Dependent on finding code-caves inside the PE file.

2. Dependent on finding a code-cave that has execute permissions because

altering section permissions is highly susceptible to detection.

3. Dependent on finding malicious code that can fit inside the code-cave.

Why not just edit the .text section?

Adding malicious code to the .text
section

1. Use PErfidious to fingerprint the PE file and convert it into a class based

structure.

2. Use a function to directly input the malicious code.

3. PErfidious extracts the .text section of the PE file and combines it with the

malicious code, thus creating a new .text section with malicious implants.

4. Make changes to the PE file to accommodate the new .text section.

Advantages of this approach
1. Relatively difficult to detect if done right.

2. The malicious code is split into smaller pieces so more difficult to detect.

3. All the other parts of the PE file are left unchanged, so the entropy of the

PE file remains relatively unchanged.

How would you detect such an
injection?

1. Only allow whitelisted software samples with verified checksum values to

run on the machine.

2. Perform graph hash analysis

DEMO TIME

Future of the project

Thank you for your time

Question Time!

